Skip to content

三角恒等式

1. 概念[1][2]

1.1 勾股定理

sinθ=1cscθ\sin \theta = \frac{1} {\csc \theta}

cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta}

cosθ=1secθ\cos \theta = \frac{1} {\sec \theta}

secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}

tanθ=1cotθ\tan \theta = \frac{1} {\cot \theta}

cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta}

一个重要的等式:

asinx+bcosx=a2+b2sin(x+arctanba)a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin\left(x + \arctan\frac{b}{a}\right)

1.2 半角公式

sinα2=±1cosα2\sin\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos\alpha}{2}}

cosα2=±1+cosα2\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}

tanα2=±1cosα1+cosα=1cosαsinα=sinα1+cosα\tan\frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos\alpha}{1 + \cos\alpha}} = \frac{1 - \cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1 + \cos\alpha}

1.3 二倍角公式

sin2α=2sinαcosα\sin 2\alpha = 2\sin\alpha\cos\alpha

cos2α=cos2αsin2α=2cos2α1=12sin2α\cos 2\alpha = \cos^2\alpha - \sin^2\alpha = 2\cos^2\alpha - 1 = 1 - 2\sin^2\alpha

tan2α=2tanα1tan2α\tan 2\alpha = \frac{2\tan\alpha}{1 - \tan^2\alpha}

1.4 三倍角公式

sin3α=3sinα4sin3α=4sin(60°α)sinαsin(60°+α)\sin 3\alpha = 3\sin\alpha - 4\sin^3\alpha = 4\sin\left(60\degree - \alpha\right)\sin\alpha\sin\left(60\degree + \alpha\right)

cos3α=4cos3α3cosα=4cos(60°α)cosαcos(60°+α)\cos 3\alpha = 4\cos^3\alpha - 3\cos\alpha = 4\cos\left(60\degree - \alpha\right)\cos\alpha\cos\left(60\degree + \alpha\right)

1.5 和差化积

sinα+sinβ=2sinα+β2cosαβ2\sin\alpha + \sin\beta = 2\sin\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}

sinαsinβ=2cosα+β2sinαβ2\sin\alpha - \sin\beta = 2\cos\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}

cosα+cosβ=2cosα+β2cosαβ2\cos\alpha + \cos\beta = 2\cos\frac{\alpha + \beta}{2}\cos\frac{\alpha - \beta}{2}

cosαcosβ=2sinα+β2sinαβ2\cos\alpha - \cos\beta = -2\sin\frac{\alpha + \beta}{2}\sin\frac{\alpha - \beta}{2}

1.6 积化合差

sinαcosβ=12[sin(α+β)+sin(αβ)]\sin\alpha\cos\beta = \frac{1}{2}\left[\sin(\alpha + \beta) + \sin(\alpha - \beta)\right]

cosαsinβ=12[sin(α+β)sin(αβ)]\cos\alpha\sin\beta = \frac{1}{2}\left[\sin(\alpha + \beta) - \sin(\alpha - \beta)\right]

cosαcosβ=12[cos(α+β)+cos(αβ)]\cos\alpha\cos\beta = \frac{1}{2}\left[\cos(\alpha + \beta) + \cos(\alpha - \beta)\right]

sinαsinβ=12[cos(α+β)cos(αβ)]\sin\alpha\sin\beta = -\frac{1}{2}\left[\cos(\alpha + \beta) - \cos(\alpha - \beta)\right]

1.7 万能公式

sin2α=2tanα1+tan2α\sin 2\alpha = \frac{2\tan\alpha}{1 + \tan^2\alpha}

cos2α=1tan2α1+tan2α\cos 2\alpha = \frac{1 - \tan^2\alpha}{1 + \tan^2\alpha}

tan2α=2tanα1tan2α\tan 2\alpha = \frac{2\tan\alpha}{1 - \tan^2\alpha}


  1. 三角恒等式,维基百科,https://zh.wikipedia.org/wiki/三角恒等式 ↩︎

  2. https://byjus.com/maths/trigonometric-identities/ ↩︎